
Informatica Economică vol. 13, no. 3/2009  153 

Partially Supervised Approach in Signal Recognition 
 

Catalina COCIANU1, Luminita STATE2, Doru CONSTANTIN2, Corina SARARU2 
1Academy of Economic Studies, Bucharest, Romania  

2

ccocianu@ase.ro, radus@sunu.rnc.ro, cdomanid@yahoo.com  
University of Pitesti, Pitesti, Romania,  

 
The paper focuses on the potential of principal directions based approaches in signal 
classification and recognition. In probabilistic models, the classes are represented in terms of 
multivariate density functions, and an object coming from a certain class is modeled as a 
random vector whose repartition has the density function corresponding to this class. In cases 
when there is no statistical information concerning the set of density functions corresponding 
to the classes involved in the recognition process, usually estimates based on the information 
extracted from available data are used instead. In the proposed methodology, the 
characteristics of a class are given by a set of eigen vectors of the sample covariance matrix. 
The overall dissimilarity of an object X with a given class C is computed as the disturbance of 
the structure of C, when X is allotted to C. A series of tests concerning the behavior of the 
proposed recognition algorithm are reported in the final section of the paper. 
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Introduction  
Machine recognition of patterns can be 

viewed as a two-fold task, comprising 
learning the invariant properties of a set of 
samples characterizing a class, and deciding 
that a new sample is a possible member of 
the class by noting that it has properties 
common to those of the set of samples.  
A typical pattern recognition system consists 
of three phases. These are data acquisition, 
feature extraction and classification. In the 
data acquisition phase, depending on the 
environment within which the objects are to 
be classified, data are gathered using a set of 
sensors. These are then passed on to the 
feature extraction phase, where the 
dimensionality of the data is reduced by 
measuring and retaining only some 
characteristic features or properties. In a 
broader perspective, this stage significantly 
influences the entire recognition process. 
Finally, in the classification phase, the 
extracted features are passed on to the 
classifier that evaluates the incoming 
information and makes a final decision. This 
phase basically establishes a transformation 
between the features and the classes. 
Therefore pattern recognition can be 
described as a transformation from the 

measurement space M to the feature space F 
and finally to the decision space D. 
The problem of classification basically 
establishes a transformation F→D between 
the features and the classes. In other words, it 
provides a partitioning of the feature space 
into regions, one region for each category of 
input. That is, it attempts to assign every data 
point in the entire feature space to one of the 
possible (say K) classes. Different forms of 
transformation can be a Bayesian rule of 
computing a posteriori class probability, 
nearest neighbor rule, linear discriminant 
functions, perceptron rule, nearest prototype 
rule, etc. Classifiers are usually, but not 
always, designed with labeled data, in which 
case these problems are sometimes referred 
to as supervised classification (where the 
parameters of a classifier function D are 
learned). Some common examples of the 
supervised pattern classification techniques 
are the nearest neighbor rule, Bayes' 
maximum likelihood classifier and the 
perceptron rule [4], [5], [10].  
The process of feature selection aims to map 
a data space into a feature space that, in 
theory, has precisely the same dimension as 
the original data space. The mapping is 
designed such that the available data set is 
represented by a reduced number of effective 
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features, the most informative ones (that is 
by retaining most of the intrinsic information 
content of the data). Principal Component 
Analysis (PCA) has been broadly used in a 
large series of signal and image processing, 
pattern recognition and data analysis 
applications. Classical PCA is based on the 
second-order statistics of the data and, in 
particular, on the eigen-structure of the data 
covariance matrix and accordingly, the PCA 
neural models incorporate only cells with 
linear activation functions. More recently, 
several generalizations of the classical PCA 
models to non-Gaussian models, the 
Independent Component Analysis (ICA) and 
the Blind Source Separation techniques 
(BSS) have become a very attractive and 
promising framework in developing more 
efficient signal processing algorithms. [10] 
The paper focuses on the potential of 
principal directions-based approaches in 
signal classification. The structure of a class 
is represented in terms of the estimates of its 
principal directions computed from data, the 
overall dissimilarity of a particular object 
with a given class being given by the 
“disturbance” of the structure, when the 
object is identified as a member of this class. 
A series of conclusions experimentally 
established are exposed in the final section of 
the paper. 
 
2 The Proposed Methodology for 
Classification Purposes 
According to the well known result 
established by Karhunen and Loeve, a set of 
principal directions corresponds to the 
maximum variability of the “cloud” from 

metric point of view, and they are also almost 
optimal from informational point of view, the 
principal directions being recommended by 
the maximum entropy principle as the most 
reliable characteristics of the repartition.  
PCA allows the identification of a linear 
transform such that the axes of the resulted 
coordinate system correspond to the largest 
variability of the investigated signal. The 
signal features corresponding to the new 
coordinate system are uncorrelated, that is, in 
case of normal models these components are 
independent. The advantages of using 
principal components reside from the fact 
that the information contained by each band 
is maximum for the whole set of bits [3].  
The principal directions of a class are given 
by a set of unit orthogonal eigen vectors of 
the covariance matrix. 
When the available data is represented by a 
set of objects NXXX ,...,, 21 , belonging to a 
certain class C, the covariance matrix is 
estimated by the sample covariance matrix,       
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 coming from the 
same class has to be included in the sample, 
the new estimate of the covariance matrix 
can be recomputed as, 
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Using first order approximations [11], the 
estimates of the eigen values and eigen 
vectors respectively are given by,  
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Let N
n

N ψψ ,...,1 be set of principal directions 

of the class C computed using NΣ̂ . When 
the example XN+1
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 is identified as a member 
of the class C, then the disturbance implied 
by extending C is expressed as,  

 (6) 
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where d is the Euclidian distance and 
11
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computed using  1
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+NΣ . 
Let { }MCCCH ,...,, 21= be a set of classes, 
where the class Cj contents Nj elements. The 
new object X is allotted to Cj
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In order to protect against misclassifications, 
due to insufficient “closeness” to any class, 
we implement this recognition technique 
using a threshold T>0 such that the example 
X is allotted to Cj

Briefly, the recognition procedure is 
described below [2].  

 only if relation (7) holds 
and D<T. 

 
Input: { }MCCCH ,...,, 21=  
Repeat 
i←1 
Step 1:  Let X be a new sample. Classify X 
according to (7) 
Step 2: If Mjj ≤≤∃ 1, such that X is allotted 
to jC , then  
2.1.re-compute the characteristics of jC  
using (2), (3) and (4) 
2.2. i++ 
Step 3: If i<PN goto Step 1 
     Else 
     3.1. For i= M,1 , compute the 
characteristics of class iC  using M.      

    3.2. goto Step 1. 
Until the last new example was classified  
Output: The new set{ } CRCCC M ∪,...,, 21  
 

The performance of the proposed algorithm 
was evaluated mainly using the leaving one 
out method. Being given the complexity of 
the computation that has to be carried out in 
implementing this evaluation technique, 
instead of the exact eigen values and eigen 
vectors, the re-computation was mainly 
based on first order approximations derived 
by applying the perturbation theory. Also, in 
order to keep the computational complexity 
at a reasonable level, the recursive re-
computation schemes established by the 
following lemma proved extremely useful.  
Lemma. Let KXXX ,...,, 21  be an n-
dimensional Bernoullian sample. We denote 
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vectors of NΣ̂ , 12 −≤≤ KN . In case the 

eigen values of 1
ˆ

+NΣ  are pair wise distinct, 
the following first order approximations 
hold, [1] 
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Using first order approximations, from (11) 
we get, 
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The first order approximations of the 
orthonormal eigen vectors of NΣ̂   can be 
derived using the expansion of each vector 
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holds for each ni ≤≤1 . 
For nij ≤≠≤1 , from (20) we obtain the 
following equations: 
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From (23) we get, 

( ) ( )
11

1
1

1
11

, ++

+
+

+
++

−

∆
=∆=

N
j

N
i

N
iN

TN
jN

i
TN

jjib
λλ

ψΣψ
ψψ  (24) 

Consequently, the first order approximation 
of the eigen vectors of NΣ̂  are, 
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3 Experiments and Conclusive Remarks 
Several tests on the proposed recognition 
procedure were performed on different 
classes of signals. The results proved very 

good performance in terms of the recognition 
error. 
Test 1. The evaluation of error using the 
leaving one out method.  
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Sequentially, one of the given examples is 
removed from the sample. The classifier is 
designed using the rest of 2NP-1 examples 
(that is the characteristics of the classes are 
computed in terms of the NP, NP-1 
remaining examples) and the removed 
example is classified into one of resulted 
classes.  The error is evaluated as

NP
F

2
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where F is the number of misclassified 
examples.  
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sample means and the sample covariance 
matrices respectively. Let X be the removed 
example. In case X comes from the first 
class, the new characteristics are, 
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for the first class and remains unchanged for 
the second one, where 
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In case X comes from the second class, 
similar formulas are used. 
The evaluation of the error is performed for 

150,75,50,40,30,20,10=NP . Several tests 
were performed on samples generated from 3 
repartitions, Gaussian, Rayleigh and 
geometric, each class corresponding to one of 
them. All tests reported to a surprising 
conclusion that is the misclassification error 
is near to 0. 
a) The classes correspond to the Gaussian 
repartition and Rayleigh repartition 

respectively, NP=75, 150, n=50, e=50, where 
n is the data dimensionality and e is the 
number of epochs. The resulted values of 
empirical errors are 0.213 in case NP=75 and 
respectively 0.0327 in case NP=150. Several 
other tests confirmed the idea that the 
performance can be significantly improved 
by using larger size training sets. 
 The variation of the empirical error in terms 
of e is presented in Figure 1 and Figure 2. In 
Figure1 the test is performed for NP=75 and 
in Figure 2 the volume is NP=150 

 

 
Fig. 1. The variation of empirical error for NP=75 
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Fig. 2. The variation of empirical error for NP=150 

 
b) The classes correspond to the geometric 
repartition and Rayleigh repartition 
respectively, NP=50, 150, n=50, e=50, where 
n is the data dimensionality and e is the 
number of epochs. The resulted values of 
empirical errors are 0.35 in case NP=50 and 

respectively 0.0112 in case NP=150. The 
variation of the empirical error in terms of e 
is presented in Figure 3 and Figure 4. In 
Figure3 the test is performed for NP=50 and 
in Figure 4 the volume is NP=150. 

 
Fig. 3. The variation of empirical error for NP=50 

 
Fig. 4. The variation of empirical error for NP=150 

 



Informatica Economică vol. 13, no. 3/2009  159 

c) The classes correspond to the Gaussian 
repartition, NP=50,150, n=50, e=50, where n 
is the data dimensionality and e is the 
number of epochs. The resulted values of 
empirical errors are 0.15 in case NP=50 and 

respectively 0.0261 in case NP=150. The 
variation of the empirical error in terms of e 
is presented in Figure 5 and Figure 6. In 
Figure5 the test is performed for NP=50 and 
in Figure 6 the volume is NP=150  

 
Fig. 5. The variation of empirical error for NP=50 

 
Fig. 6. The variation of empirical error for NP=150 

 
Test 2. The evaluation of the error by 
counting the misclassified examples from a 
set of NC new test samples coming from the 
given classes of the same repartitions. 
In this case, the learning is performed in an 
adaptive way, that is, each new classified 
example contributes to the new 
characteristics of the class the exampled is 
assigned to, the new characteristics being 
computed using first order approximations in 
terms of the previous ones. Besides, after 
each iteration, the characteristics of the new 

resulted classes are re-computed using an 
exact method M.  
The tests were performed for 
NP=50,100,150, NC=10,20,30,40,50, n=50, 
e=100, where n is the data dimensionality 
and e is the number of epochs. 
a) The classes correspond to the Gaussian 
repartition and Rayleigh repartition 
respectively. The variation of the empirical 
error in terms of e is presented in Figure 7 
and Figure 8. In Figure 7 the test is 
performed for NP=100 and in Figure 8 the 
volume is NP=150  
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Fig. 7. The variation of empirical error for NP=100 

 
Fig. 8. The variation of empirical error for NP=150 

 
b) The classes correspond to the geometric 
repartition and Rayleigh repartition 
respectively. The variation of the empirical 
error in terms of e is presented in Figure 9 

and Figure 10. In Figure 9 the test is 
performed for NP=50 and in Figure 10 the 
volume is NP=150  

 
Fig. 9. The variation of empirical error for NP=50 
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Fig. 10. The variation of empirical error for NP=150 

 
c) The classes correspond to the Gaussian 
repartition. The variation of the empirical 
error in terms of e is presented in Figure 11 

and Figure 12. In Figure 11 the test is 
performed for NP=50 and in Figure 12 the 
volume is NP=150  

 
Fig. 11. The variation of empirical error for NP=50 

 
Fig. 12. The variation of empirical error for NP=150 
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The results of a test on a two-class problem 
in signal recognition are presented in Figure 

13, Figure 14, and Figure 15.  

 

 
Fig. 13. The input signals 

 
The samples are extracted from the signals 
depicted in Figure 13. In Figure 14 are 
represented the marginal probability 
distribution function (PDF) of each signal. 

The correct recognition of 20 new examples 
coming from these two classes using P1 
failed in 2 cases. 

 

 
Fig. 14. The marginal PDF of the input signals 
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Fig. 15. A set of correct recognized examples using the proposed algorithm 

 
The correctly recognized examples are 
presented in Figure 15. The performance was 
improved significantly when the volume of 
the initial samples increases. The values of 

the resulted empirical mean error are less 
than 0.05 (more than 95% new examples are 
correctly recognized).   
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